Cilindri idraulici
ISO 6022

# SYSTEM SYSTEM SRL



## INDICE:

| Caratteristiche generali                                | 3  |
|---------------------------------------------------------|----|
| Tipi di fissaggio                                       | 5  |
| Caratteristiche dello stelo                             | 6  |
| Dimensioni dei cilindri a semplice stelo                | 8  |
| Dimensioni dei cilindri a doppio stelo                  | 10 |
| Tipi di connessioni                                     | 11 |
| Posizioni delle connessioni e delle viti di regolazione | 11 |
| Selezione del diametro dello stelo                      | 12 |
| Accessori                                               | 14 |
| Serraggio dei cilindri                                  | 15 |
| Caratteristiche delle guarnizioni                       | 16 |
| Kit di ricambio delle guarnizioni                       | 16 |
| Come ordinare un cilindro Comer System                  | 18 |
| Esecuzioni speciali                                     | 19 |

## DEFINIZIONI1:

CILINDRO: dispositivo che trasforma l'energia del fluido in forza meccanica e movimento rettilineo

ALESAGGIO DEL CILINDRO: diametro interno del cilindro

STELO: elemento che trasmette la forza meccanica e il movimento del pistone

FISSAGGIO: dispositivo che permette il fissaggio del cilindro sull'elemento corrispondente

<sup>&</sup>lt;sup>1</sup> rif. Normativa ISO 6022



## Cilindri idraulici Costruzione Standard secondo norme ISO 6022

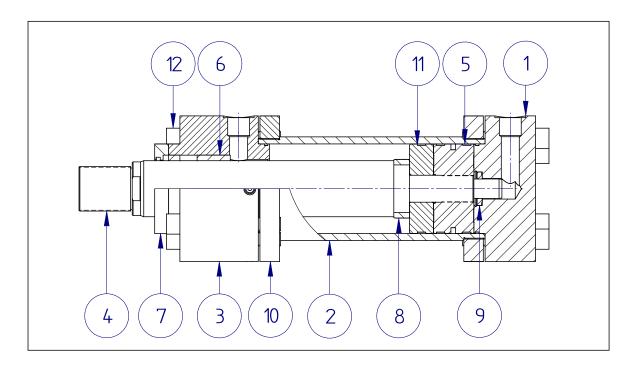
ISO 6022

Pressione di lavoro 250 BAR

11 diametri di alesaggio

24 diametri di stelo

5 tipi di fissaggio (più un tipo non a normativa)


Possibilità di frenatura sulla testa e sul fondo

Corse variabili fino a 5000 mm

Terminale stelo filettato maschio o femmina a scelta

Testa e fondo a forma rotonda

Bocche standard filettate gas cilindrico BSP, a richiesta si possono fornire filettature NPTF o SAE



| 1 Fondo | 5 Pistone                 | 9 Bussola ammortizzamento  |
|---------|---------------------------|----------------------------|
|         | (B. 1.1.1                 | posteriore                 |
| 2 Canna | 6 Bussola in bronzo       | 10.0                       |
|         |                           | 10 Controflangia           |
| 3 Testa | 7 Flangia anteriore       |                            |
|         |                           | 11 Distanziale per pistone |
| 4 Stelo | 8 Bussola ammortizzamento | 12 Vite                    |
|         | anteriore                 | 12 VIC                     |



#### **CANNA**

È in acciaio di alta qualità trafilata a freddo con valori di resistenza allo snervamento fino a 45 kg/mm<sup>2</sup>.

Le canne internamente sono lappate con grado di rugosità di 0,25 μ.

#### **STELO**

Viene costruito in acciaio di alta qualità rettificato e cromato a spessore, con tolleranza sul diametro f7 e grado di rugosità  $0.2 \mu$ , a richiesta possono essere usati materiali speciali.

## **TESTATE**

Vengono realizzate in acciaio con grado di precisione elevato per avere la massima concentricità tra loro, riducendo al minimo gli attriti una volta montate.

#### **PISTONE**

Del tipo mono blocco, è in acciaio di qualità. Viene curata particolarmente la concentricità per il buon funzionamento delle guarnizioni.

#### **GUARNIZIONI**

Vengono impiegate guarnizioni di ottima qualità in gomma nitrilica (buna N) compatibile con i fluidi che generalmente vengono utilizzati in oleodinamica, limite delle temperature – 10° + 90°C, velocità max 0,6 m/s a richiesta, ed in casi particolari si possono fornire i cilindri con guarnizioni in VITON, in PTFE, oppure con mescole speciali.

#### **FRENATURE**

I cilindri possono essere forniti con dispositivo di frenatura sia sulla parte anteriore sia sulla parte posteriore.

Questo si ottiene con dei particolari accorgimenti eseguiti all'interno del cilindro.

#### LIMITATORE DI CORSA

Viene adottato quando la corsa è particolarmente lunga.

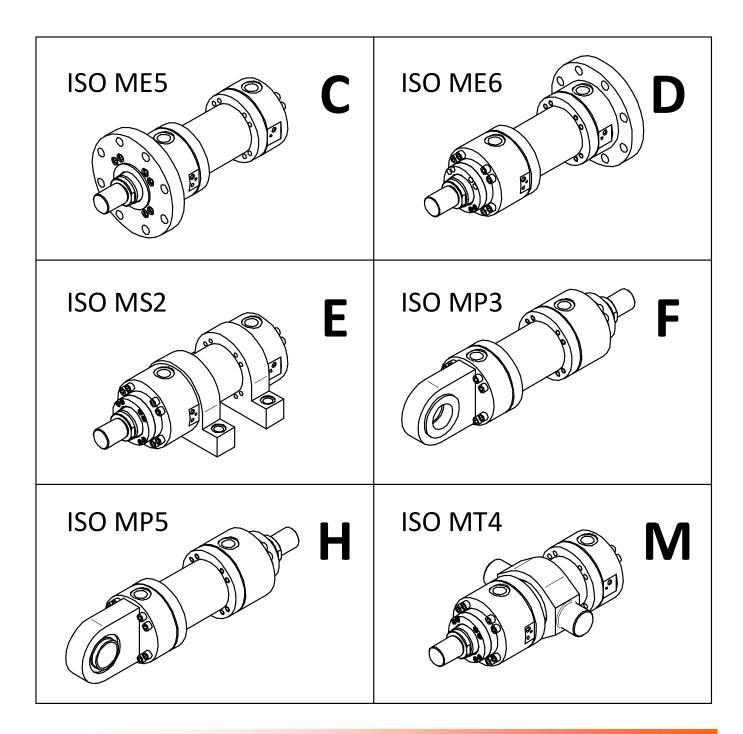
La lunghezza consigliabile è:

50 mm per corse 1000÷1500 mm

100 mm per corse 1500÷2000 mm

150 mm per corse 2000÷2500 mm

Per corse superiori interpellare il ns. ufficio tecnico.

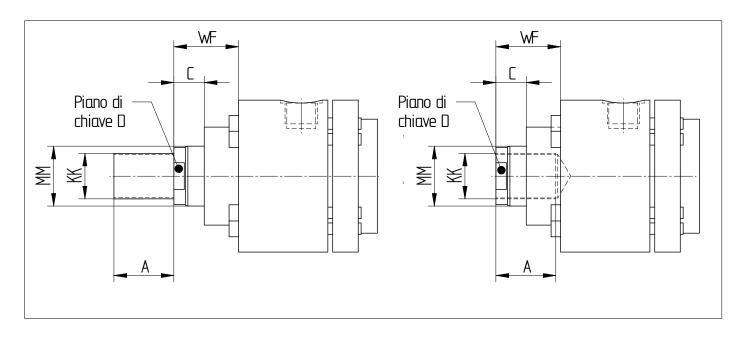

In caso il cilindro lavorasse in tiro, non necessita l'uso di limitatori di corsa.



## TIPI DI FISSAGGIO

I fissaggi previsti dalla normativa ISO 6022 sono i seguenti:

- -MF3: flangia anteriore circolare
- -MF4: flangia posteriore circolare
- -MP3: cerniera singola posteriore fissa
- -MP5: cerniera singola posteriore fissa con snodo sferico radiale
- -MT4: perni di articolazione intermedia fissa o spostabili
- E' inoltre fornibile il fissaggio MS2: piedini laterali non riconducibili alla normativa ISO 6022.



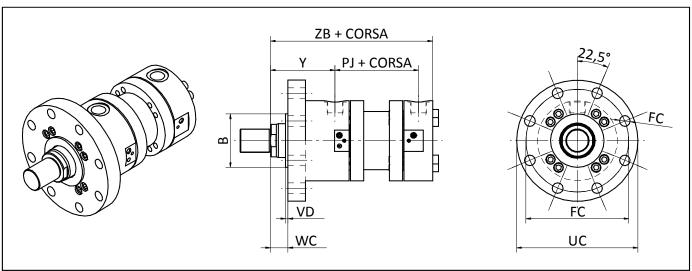



## CARATTERISTICHE DELLO STELO

## FILETTATURA MASCHIO (M)

## FILETTATURA FEMMINA (F)



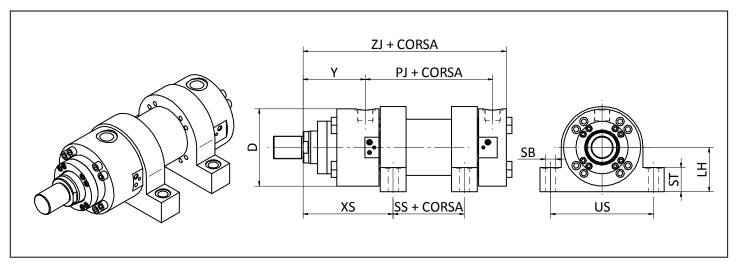

| Ales Ø | MM        | KK       | A   | WF  | С  | D         |
|--------|-----------|----------|-----|-----|----|-----------|
| 50     | 32 / 36   | M27 x 2  | 36  | 47  | 22 | 28 / 30   |
| 63     | 40 / 45   | M33 x 2  | 45  | 53  | 25 | 34 / 38   |
| 80     | 50 / 56   | M42 x 2  | 56  | 60  | 28 | 43 / 48   |
| 100    | 63 / 70   | M48 x 2  | 63  | 68  | 32 | 56 / 62   |
| 125    | 80 / 90   | M64 x 3  | 85  | 76  | 36 | 70 / 80   |
| 140*   | 90 / 100  | M72 x 3  | 90  | 76  | 36 | 80 / 85   |
| 160    | 100 / 110 | M80 x 3  | 95  | 85  | 40 | 85 / 100  |
| 180*   | 110 / 125 | M90 x 3  | 105 | 95  | 45 | 100 / 110 |
| 200    | 125 / 140 | M100 x 3 | 112 | 101 | 45 | 110 / 120 |
| 250    | 160 / 180 | M125 x 4 | 125 | 113 | 50 | -         |
| 320    | 200 / 220 | M160 x 4 | 160 | 136 | 56 | -         |

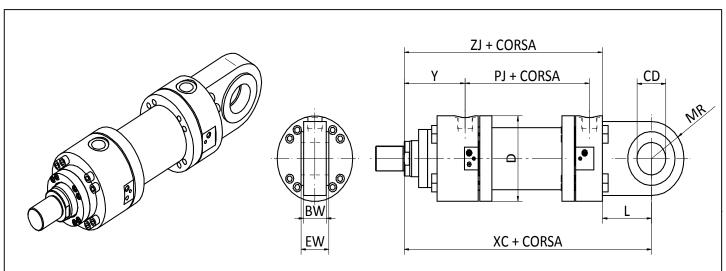

## Particolare terminale stelo

Filettatura speciale: Qualora si volesse una filettatura diversa dal catalogo sulla sigla dopo il numero dello stelo indicare la S. Il valore della filettatura indicato a parte.



# ATTACCHI A FLANGIA

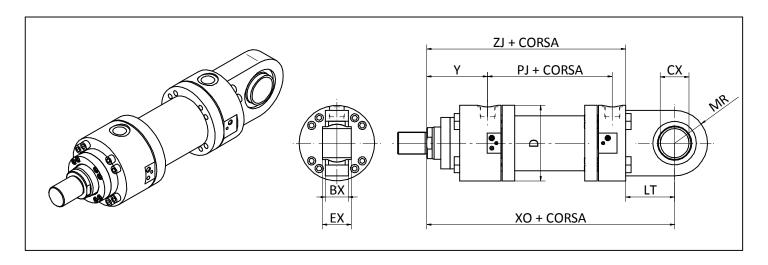


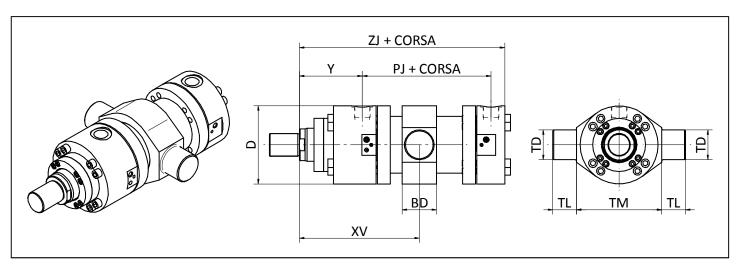




| Ales<br>Ø | MM        | B/<br>BA | D   | EE     | F  | FB   | FC  | PJ  | UC  | VD | WC | Y   | ZJ  | ZP  |
|-----------|-----------|----------|-----|--------|----|------|-----|-----|-----|----|----|-----|-----|-----|
| 50        | 32 / 36   | 63       | 100 | G1/2   | 25 | 13,5 | 132 | 120 | 155 | 4  | 22 | 98  | 240 | 265 |
| 63        | 40 / 45   | 75       | 115 | G3/4   | 28 | 13,5 | 150 | 133 | 175 | 4  | 25 | 112 | 270 | 298 |
| 80        | 50 / 56   | 90       | 145 | G3/4   | 32 | 17,5 | 180 | 155 | 210 | 4  | 28 | 120 | 307 | 332 |
| 100       | 63 / 70   | 110      | 160 | G1     | 36 | 22   | 212 | 171 | 250 | 5  | 32 | 134 | 335 | 371 |
| 125       | 80 / 90   | 132      | 200 | G1     | 40 | 22   | 250 | 205 | 290 | 5  | 36 | 153 | 390 | 430 |
| 140*      | 90 / 100  | 145      | 230 | G1-1/4 | 40 | 26   | 300 | 208 | 340 | 5  | 36 | 181 | 425 | 465 |
| 160       | 100 / 110 | 160      | 260 | G1-1/4 | 45 | 26   | 315 | 235 | 360 | 5  | 40 | 185 | 460 | 505 |
| 180*      | 110 / 125 | 185      | 280 | G1-1/4 | 50 | 33   | 365 | 250 | 420 | 5  | 45 | 205 | 500 | 550 |
| 200       | 125 / 140 | 200      | 310 | G1-1/4 | 56 | 33   | 385 | 278 | 440 | 5  | 45 | 220 | 540 | 596 |
| 250       | 160 / 180 | 250      | 390 | G1-1/2 | 63 | 39   | 475 | 325 | 540 | 8  | 50 | 260 | 640 | 703 |
| 320       | 200 / 220 | 320      | 500 | G2     | 80 | 45   | 600 | 350 | 675 | 8  | 56 | 310 | 750 | 830 |



# ATTACCO A PIEDINI - ATTACCO A CERNIERA SINGOLA POSTERIORE FISSA

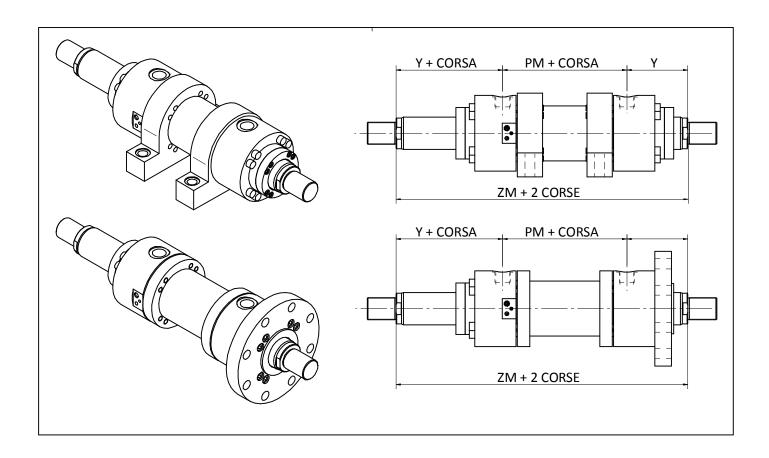



| Ales<br>Ø | CD  | D   | EE     | EW  | L   | MR   | PJ  | SB   | SS  | ST  | TS  | US  | XC   | XS    | Y   | ZJ  |
|-----------|-----|-----|--------|-----|-----|------|-----|------|-----|-----|-----|-----|------|-------|-----|-----|
| 50        | 32  | 100 | G1/2   | 32  | 65  | 38   | 120 | 11   | 55  | 32  | 135 | 160 | 305  | 130   | 98  | 240 |
| 63        | 40  | 115 | G3/4   | 40  | 69  | 50   | 133 | 13,5 | 55  | 37  | 155 | 185 | 348  | 147,5 | 112 | 270 |
| 80        | 50  | 145 | G3/4   | 50  | 88  | 61,5 | 155 | 17,5 | 55  | 42  | 185 | 225 | 395  | 170,5 | 120 | 307 |
| 100       | 63  | 160 | G1     | 63  | 107 | 71   | 171 | 22   | 55  | 52  | 220 | 265 | 442  | 192,5 | 134 | 335 |
| 125       | 80  | 200 | G1     | 80  | 130 | 90   | 205 | 26   | 60  | 62  | 270 | 325 | 520  | 230   | 153 | 390 |
| 140*      | 90  | 230 | G1-1/4 | 90  | 150 | 100  | 208 | 30   | 61  | 77  | 325 | 390 | 580  | 254,5 | 181 | 425 |
| 160       | 100 | 260 | G1-1/4 | 100 | 157 | 112  | 235 | 33   | 79  | 77  | 340 | 405 | 617  | 265,5 | 185 | 460 |
| 180*      | 110 | 280 | G1-1/4 | 110 | 185 | 129  | 250 | 40   | 85  | 87  | 390 | 465 | 690  | 287,5 | 205 | 500 |
| 200       | 125 | 310 | G1-1/4 | 125 | 210 | 145  | 278 | 40   | 90  | 87  | 405 | 480 | 756  | 315   | 220 | 540 |
| 250       | 160 | 390 | G1-1/2 | 160 | 263 | 187  | 325 | 52   | 120 | 112 | 520 | 620 | 903  | 360   | 260 | 640 |
| 320       | 200 | 500 | G2     | 200 | 330 | 241  | 350 | 62   | 120 | 152 | 620 | 740 | 1080 | 425   | 310 | 750 |



# ATTACCO A SNODO SFERICO RADIALE POSTERIOE - ATTACCO A PERNI






| Ales<br>Ø | BD  | CX  | D   | EX  | LT  | MS   | PJ  | TD  | TL  | TM  | UV  | xo   | XV        | Y   | ZJ  |
|-----------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|------|-----------|-----|-----|
| 50        | 38  | 32  | 100 | 32  | 65  | 38   | 120 | 32  | 25  | 112 | 100 | 305  |           | 98  | 240 |
| 63        | 48  | 40  | 115 | 40  | 69  | 50   | 133 | 40  | 32  | 125 | 115 | 348  |           | 112 | 270 |
| 80        | 58  | 50  | 145 | 50  | 88  | 61,5 | 155 | 50  | 40  | 150 | 145 | 395  |           | 120 | 307 |
| 100       | 70  | 63  | 160 | 63  | 107 | 71   | 171 | 63  | 50  | 180 | 165 | 442  |           | 134 | 335 |
| 125       | 88  | 80  | 200 | 80  | 130 | 90   | 205 | 80  | 63  | 224 | 200 | 520  | VAF       | 153 | 390 |
| 140*      | 98  | 90  | 230 | 90  | 150 | 100  | 208 | 90  | 70  | 265 | 260 | 580  | UAI       | 181 | 425 |
| 160       | 108 | 100 | 260 | 100 | 157 | 112  | 235 | 100 | 80  | 280 | 280 | 617  | VARIABILE | 185 | 460 |
| 180*      | 118 | 110 | 280 | 110 | 185 | 129  | 250 | 110 | 90  | 320 | 315 | 690  | (-)       | 205 | 500 |
| 200       | 133 | 125 | 310 | 125 | 210 | 145  | 278 | 125 | 100 | 335 | 330 | 756  |           | 220 | 540 |
| 250       | 178 | 160 | 390 | 160 | 263 | 187  | 325 | 160 | 125 | 425 | 420 | 903  |           | 260 | 640 |
| 320       | 218 | 200 | 500 | 200 | 330 | 241  | 350 | 200 | 160 | 530 | 510 | 1080 |           | 310 | 750 |



## CILINDRI A DOPPIO STELO (STELO PASSANTE)



| Ales. | Stelo     | Y   | PM  | ZM  |
|-------|-----------|-----|-----|-----|
| 50    | 32 / 36   | 98  | 119 | 315 |
| 63    | 40 / 45   | 112 | 126 | 350 |
| 80    | 50 / 56   | 120 | 156 | 396 |
| 100   | 63 / 70   | 134 | 172 | 440 |
| 125   | 80 / 90   | 153 | 204 | 510 |
| 140*  | 90 / 100  | 181 | 208 | 570 |
| 160   | 100 / 110 | 185 | 240 | 610 |
| 180*  | 110 / 125 | 205 | 250 | 660 |
| 200   | 125 / 140 | 220 | 280 | 720 |
| 250   | 160 / 180 | 260 | 320 | 840 |
| 320   | 200 / 220 | 310 | 350 | 970 |

Per i cilindri a doppio stelo indicare i tipi di fissaggio desiderati. I fissaggi disponibili sono i tipi A, C, E, M.

Per le quote non indicate nel prospetto accanto si faccia riferimento alle tabelle precedenti (cilindri a semplice stelo).



#### TIPI DI CONNESSIONI

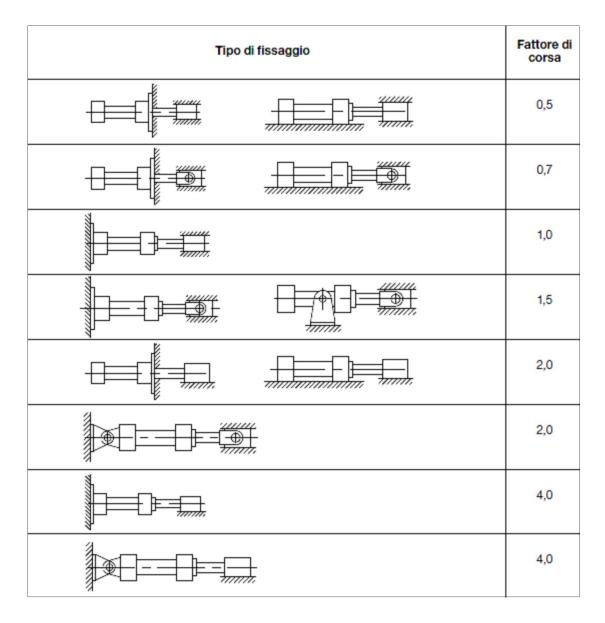
I cilindri Comer System vengono forniti con connessioni filettate BSP secondo la normativa ISO 6022. sono fornibili, a richiesta, filettature metriche, NPTF, SAE 6000

| Ales. | Connessioni filet-<br>tatura BSP | Connessioni filet-<br>tatura metrica | Connessioni filet-<br>tatura NPTF | Connessioni con<br>flange SAE 6000 |
|-------|----------------------------------|--------------------------------------|-----------------------------------|------------------------------------|
| 50    | G1/2                             | M22x1,5                              | NPTF 1/2                          | SAE 6000 - 1/2                     |
| 63    | G3/4                             | M27x2                                | NPTF 3/4                          | SAE 6000 - 3/4                     |
| 80    | G3/4                             | M27x2                                | NPTF 3/4                          | SAE 6000 - 3/4                     |
| 100   | G1                               | M33x2                                | NPTF 1                            | SAE 6000 - 1                       |
| 125   | G1                               | M33x2                                | NPTF 1                            | SAE 6000 - 1                       |
| 140*  | G1-1/4                           | M42x2                                | NPTF 1-1/4                        | SAE 6000 - 1-1/4                   |
| 160   | G1-1/4                           | M42x2                                | NPTF 1-1/4                        | SAE 6000 - 1-1/4                   |
| 180*  | G1-1/4                           | M42x2                                | NPTF 1-1/4                        | SAE 6000 - 1-1/4                   |
| 200   | G1-1/4                           | M42x2                                | NPTF 1-1/4                        | SAE 6000 - 1-1/4                   |
| 250   | G1-1/2                           | M48x2                                | NPTF 1-1/2                        | SAE 6000 - 1-1/2                   |
| 320   | G2                               | M60x2                                | NPTF 2                            | SAE 6000 - 2                       |

A richiesta è possibile fornire cilindri con connessioni maggiorate. In questi casi è possibile che le dimensioni di ingombro del cilindro cambino. Per maggiori informazioni, rivolgersi al nostro ufficio tecnico.

#### POSIZIONE DELLE CONNESSIONI E DELLE VITI DI REGOLAZIONE DELLA FRENATURA

Di seguito vengono riportate le indicazioni sulla posizione standard delle connessioni e delle viti di ammortizzamento sui cilindri Comer System. I cilindri vengono dotati di sfiati aria di serie.


|       | 4 ( ) 2                 |     | Tipo co | struttivo |   |
|-------|-------------------------|-----|---------|-----------|---|
|       | 3                       | C-D | E       | F-H       | M |
|       | Attacco di mandata      | 1   | 1       | 1         | 1 |
| Testa | Vite di ammortizzamento | 2   | 2       | 2         | 2 |
| Testa | Valvola di non ritorno  | 4   | 4       | 4         | 4 |
|       | Sfiato aria             | 3   | 3       | 3         | 3 |
|       | Attacco di mandata      | 1   | 1       | 1         | 1 |
| Fondo | Vite di ammortizzamento | 2   | 2       | 2         | 2 |
| rondo | Valvola di non ritorno  | 4   | 4       | 4         | 4 |
|       | Sfiato aria             | 3   | 3       | 3         | 3 |

In caso di presenza di sensori di posizione, le posizioni sopra indicate vengono adattate alle necessità del cliente.

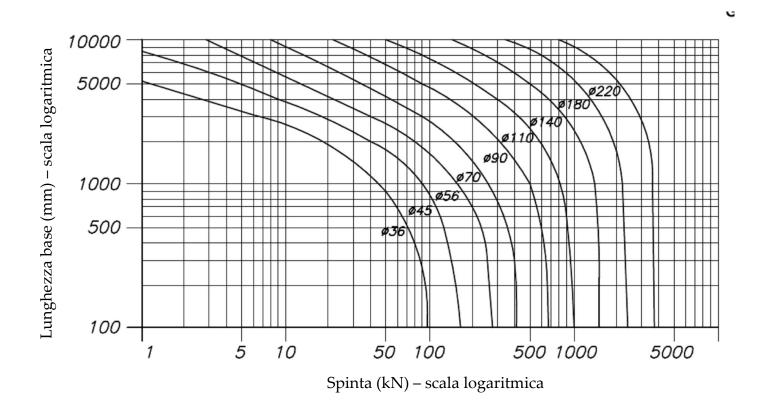


## SELEZIONE DEL DIAMETRO DELLO STELO - VERIFICA DEL CARICO DI PUNTA

Quando il cilindro lavora in spinta è necessario verificare che non sia soggetto a carico di punta eccessivo. Per la verifica si procede determinando la costante "fattore di corsa" relativa alla configurazione del cilindro nella tabella seguente:

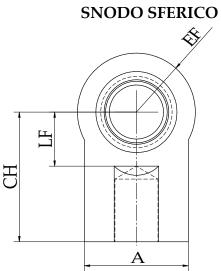


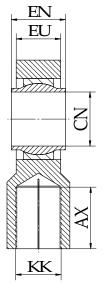
Si determina la lunghezza L:


L = fattore di corsa \* CORSA

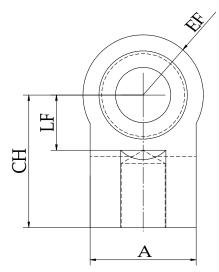
Si determina il carico di spinta complessivo esercitato, moltiplicando la superficie di alesaggio per la pressione di lavoro.

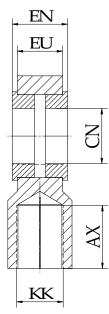



|           |                | Carico di spinta del cilindro (kN) |        |         |         |         |         |  |  |  |
|-----------|----------------|------------------------------------|--------|---------|---------|---------|---------|--|--|--|
| ALES (mm) | AREA DI SPINTA | 50 bar                             | 75 bar | 100 bar | 160 bar | 250 bar | 320 bar |  |  |  |
| 50        | 1963           | 9,82                               | 14,73  | 19,63   | 31,42   | 49,09   | 62,83   |  |  |  |
| 63        | 3117           | 15,59                              | 23,38  | 31,17   | 49,88   | 77,93   | 99,75   |  |  |  |
| 80        | 5027           | 25,13                              | 37,70  | 50,27   | 80,42   | 125,66  | 160,85  |  |  |  |
| 100       | 7854           | 39,27                              | 58,90  | 78,54   | 125,66  | 196,35  | 251,33  |  |  |  |
| 125       | 12272          | 61,36                              | 92,04  | 122,72  | 196,35  | 306,80  | 392,70  |  |  |  |
| 140       | 15394          | 76,97                              | 115,45 | 153,94  | 246,30  | 384,85  | 492,60  |  |  |  |
| 160       | 20106          | 100,53                             | 150,80 | 201,06  | 321,70  | 502,65  | 643,40  |  |  |  |
| 180       | 25447          | 127,23                             | 190,85 | 254,47  | 407,15  | 636,17  | 814,30  |  |  |  |
| 200       | 31416          | 157,08                             | 235,62 | 314,16  | 502,65  | 785,40  | 1005,31 |  |  |  |
| 250       | 49087          | 245,44                             | 368,16 | 490,87  | 785,40  | 1227,18 | 1570,80 |  |  |  |
| 320       | 80425          | 402,12                             | 603,19 | 804,25  | 1286,80 | 2010,62 | 2573,59 |  |  |  |


Interpolando L con il carico di spinta individuato, è possibile definire il diametro minimo di stelo in grado di supportare il carico voluto:







# ACCESSORI

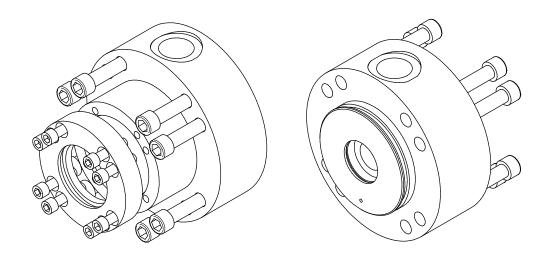











| KK       | Snodo<br>sferico | Snodo<br>fisso |
|----------|------------------|----------------|
| M27 x 2  | SS 50 M          | SF 50 M        |
| M33 x 2  | SS 63 M          | SF 63 M        |
| M42 x 2  | SS 80 M          | SF 80 M        |
| M48 x 2  | SS 100 M         | SF 100 M       |
| M64 x 3  | SS 125 M         | SF 125 M       |
| M72 x 3  | SS 140 M         | SF 140 M       |
| M80 x 3  | SS 160 M         | SF 160 M       |
| M90 x 3  | SS 180 M         | SF 180 M       |
| M100 x 3 | SS 200 M         | SF 200 M       |
| M125 x 4 | SS 250 M         | SF 250 M       |
| M160 x 4 | SS 320 M         | SF 320 M       |

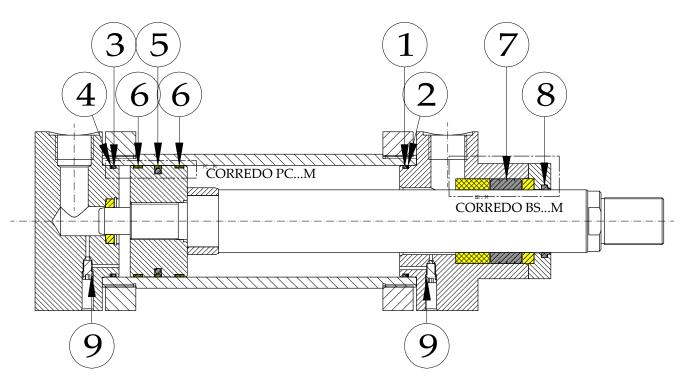
| KK       | A   | AX  | СН  | CN  | EF    | EN  | EU  | LF  |
|----------|-----|-----|-----|-----|-------|-----|-----|-----|
| M27 x 2  | 66  | 37  | 80  | 32  | 40    | 32  | 28  | 32  |
| M33 x 2  | 80  | 46  | 97  | 40  | 48,5  | 40  | 33  | 41  |
| M42 x 2  | 96  | 57  | 120 | 50  | 60    | 50  | 41  | 50  |
| M48 x 2  | 114 | 64  | 140 | 63  | 70    | 63  | 53  | 62  |
| M64 x 3  | 148 | 86  | 180 | 80  | 90    | 80  | 67  | 78  |
| M72 x 3  | 160 | 91  | 195 | 90  | 97,5  | 90  | 72  | 85  |
| M80 x 3  | 178 | 96  | 210 | 100 | 104,5 | 100 | 85  | 98  |
| M90 x 3  | 190 | 106 | 235 | 110 | 117,5 | 110 | 88  | 105 |
| M100 x 3 | 200 | 113 | 260 | 125 | 132,5 | 125 | 103 | 120 |
| M125 x 4 | 250 | 126 | 310 | 160 | 163   | 160 | 130 | 150 |
| M160 x 4 | 320 | 161 | 390 | 200 | 209   | 200 | 162 | 195 |



# SERRAGGIO DEL CILINDRO

Per la chiusura dei cilindri Comer System vengono utilizzati viti a testa cilindrica con esagono incassato, e vengono precaricati come segue:



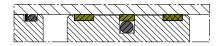

| ALES | VITE | QUAN<br>TITA' | CLASSE | MOMENTO DI SERRAG- GIO VITE (Nm) | VITE FLAN-<br>GIA ANTE-<br>RIORE | CLASSE | MOMENTO DI SERRAG- GIO VITE (Nm) |
|------|------|---------------|--------|----------------------------------|----------------------------------|--------|----------------------------------|
| 50   | M8   | 8             | 8.8    | 29,43                            | M6                               | 8.8    | 7,85                             |
| 63   | M10  | 8             | 8.8    | 49,05                            | M6                               | 8.8    | 7,85                             |
| 80   | M12  | 8             | 8.8    | 68,67                            | M8                               | 8.8    | 29,43                            |
| 100  | M12  | 8             | 8.8    | 68,67                            | M8                               | 8.8    | 29,43                            |
| 125  | M16  | 8             | 8.8    | 147,15                           | M8                               | 8.8    | 29,43                            |
| 140  | M20  | 8             | 8.8    | 245,25                           | M8                               | 8.8    | 29,43                            |
| 160  | M24  | 8             | 8.8    | 490,5                            | M10                              | 8.8    | 49,05                            |
| 180  | M24  | 8             | 8.8    | 490,5                            | M12                              | 8.8    | 68,67                            |
| 200  | M27  | 8             | 8.8    | 637,65                           | M12                              | 8.8    | 68,67                            |
| 250  | M27  | 12            | 8.8    | 637,65                           | M12                              | 8.8    | 68,67                            |
| 320  | M30  | 16            | 8.8    | 882,9                            | M16                              | 8.8    | 147,15                           |

#### CARATTERISTICHE DELLE GUARNIZIONI

Le guarnizioni devono essere scelte in base alle condizioni di lavoro in cui il cilindro si trova ad operare, ponendo particolare attenzione alle caratteristiche del fluido e alla temperatura. Si riportano di seguito i materiali suggeriti per le guarnizioni, in base alle condizioni operative del cilindro:

| MATERIALE            | CARATTERISTICHE                     | TEMPERATURA     | FLUIDO                                     |  |  |  |  |
|----------------------|-------------------------------------|-----------------|--------------------------------------------|--|--|--|--|
| NBR<br>+ poliuretano | Alta tenuta statica-<br>dinamica    | -30°C ÷ + 70°C  | Oli minerali HH, HL, HLP,<br>HLP-D, HM, HV |  |  |  |  |
| NBR + PTFE           | Basso attrito                       | -30°C ÷ + 70°C  | Oli minerali, HFA, HFC,                    |  |  |  |  |
| FKM + PTFE           | Basso attrito -<br>Alte temperature | -20°C ÷ + 120°C | Oli minerali, HFA, HFB,<br>HFD-U, HFD-R    |  |  |  |  |

#### KIT DI RICAMBIO DELLE GUARNIZIONI

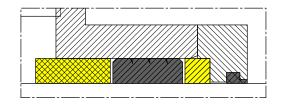



- 1 Guarnizione canna anteriore
- 2 Antiestrusione
- 3 Guarnizione canna posteriore
- 4 Antiestrusione
- 5 Guarnizione tenuta pistone

- 6 Pattino di guida pistone
- 7 Guarnizione stelo
- 8 Raschiatore
- 9 Vite di ammortizzamento con guarnizione e antiestrusione



CORREDO PC : contiene 1, 2, 3, 4, 5, 6




# CORREDO PC ... M

| Ales. | NBR + poliuretano | NBR + PTFE | FKM + PTFE |
|-------|-------------------|------------|------------|
| 50    | PC50M             | PC50MS     | PC50MV     |
| 63    | PC63M             | PC63MS     | PC63MV     |
| 80    | PC80M             | PC80MS     | PC80MV     |
| 100   | PC100M            | PC100MS    | PC100MV    |
| 125   | PC125M            | PC125MS    | PC125MV    |
| 140*  | PC140M            | PC140MS    | PC140MV    |
| 160   | PC160M            | PC160MS    | PC160MV    |
| 180*  | PC180M            | PC180MS    | PC180MV    |
| 200   | PC200M            | PC200MS    | PC200MV    |
| 250   | PC250M            | PC250MS    | PC250MV    |
| 320   | PC320M            | PC320MS    | PC320MV    |

CORREDO GB: contiene 7, 8

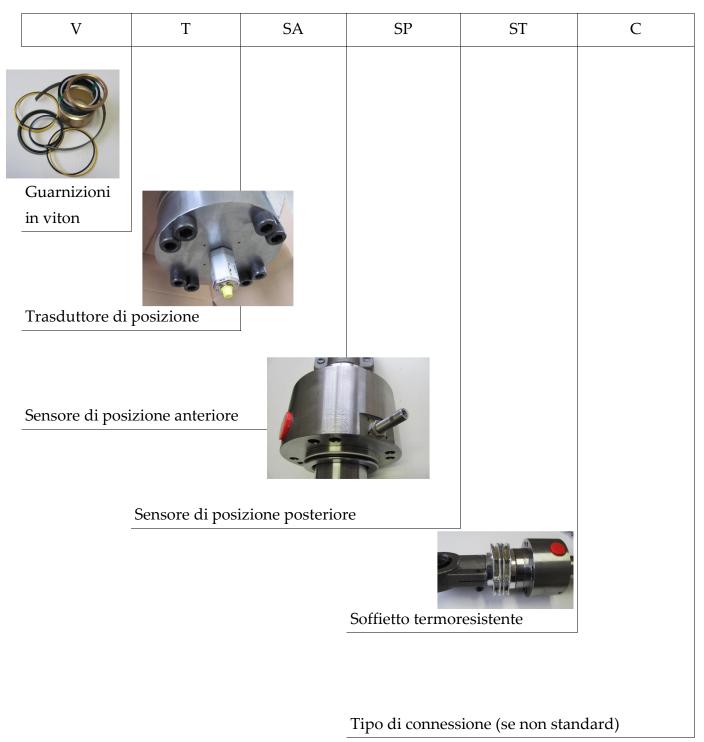
CORREDO BS: contiene 7, 8, bussola in bronzo



CORREDO GB ... M

| Ales. | STELO     | NB              | R               | FKM               |                   |  |  |  |  |  |
|-------|-----------|-----------------|-----------------|-------------------|-------------------|--|--|--|--|--|
| 50    | 32 / 36   | GB32M / GB36M   | BS32M / BS36M   | GB32MV / GB36MV   | BS32MV / BS36MV   |  |  |  |  |  |
| 63    | 40 / 45   | GB40M / GB45M   | BS40M / BS45M   | GB40MV / GB45MV   | BS40MV / BS45MV   |  |  |  |  |  |
| 80    | 50 / 56   | GB50M / GB56M   | BS50M / BS56M   | GB50MV / GB56MV   | BS50MV / BS56MV   |  |  |  |  |  |
| 100   | 63 / 70   | GB63M / GB70M   | BS63M / BS70M   | GB63MV / GB70MV   | BS63MV / BS70MV   |  |  |  |  |  |
| 125   | 80 / 90   | GB80M / GB90M   | BS80M / BS90M   | GB80MV / GB90MV   | BS80MV / BS90MV   |  |  |  |  |  |
| 140*  | 90 / 100  | GB90M / GB100M  | BS90M / BS100M  | GB90MV / GB100MV  | BS90MV / BS100MV  |  |  |  |  |  |
| 160   | 100 / 110 | GB100M / GB110M | BS100M / BS110M | GB100MV / GB110MV | BS100MV / BS110MV |  |  |  |  |  |
| 180*  | 110 / 125 | GB110M / GB125M | BS110M / BS125M | GB110MV / GB125MV | BS110MV/BS125MV   |  |  |  |  |  |
| 200   | 125 / 140 | GB125M / GB140M | BS125M / BS140M | GB125MV / GB140MV | BS125MV / BS140MV |  |  |  |  |  |
| 250   | 160 / 180 | GB160M / GB180M | BS160M / BS180M | GB160MV / GB180MV | BS160MV / BS180MV |  |  |  |  |  |
| 320   | 200 / 220 | GB200M / GB220M | BS200M / BS220M | GB200MV / GB220MV | BS200MV / BS220MV |  |  |  |  |  |




# COME ORDINARE UN CILINDRO COMER SYSTEM– SERIE ICM (ISO 6022)

| Scelta della sigla           | SERIE ICM                                                                           |   | •••      | •••      |         | Cf       |          | Fa       | <i>Fp</i> | S          |
|------------------------------|-------------------------------------------------------------------------------------|---|----------|----------|---------|----------|----------|----------|-----------|------------|
| Alesaggio                    | Indicare alesaggio in mm                                                            | _ | <b>↑</b> | <b>↑</b> | <b></b> | <b>†</b> | <b>↑</b> | <b>†</b> | <b>†</b>  | $\uparrow$ |
| Stelo A                      | Indicare Ø stelo                                                                    |   |          |          |         |          |          |          |           |            |
| Filettatura stelo            | Maschio M o Femmina F                                                               |   |          |          |         |          |          |          |           |            |
| Stelo B                      | Indicare Ø stelo                                                                    |   |          |          |         |          |          |          |           |            |
| Filettatura stelo            | Maschio M o Femmina F                                                               |   |          |          |         |          |          |          |           |            |
| Corsa cilindro               | Indicare in mm                                                                      |   |          |          |         |          |          |          |           |            |
| Tipo costruttivo             | C = testata anteriore rettangolare (ISO ME3)                                        |   |          |          |         |          |          |          |           |            |
|                              | D = testata posteriore rettangolare (ISO ME6)                                       |   |          |          |         |          |          |          |           |            |
|                              | E = Piedini laterali (ISO MS2)                                                      |   |          |          |         |          |          |          |           |            |
|                              | F = cerniera singola fissa posteriore<br>(ISO MP3)                                  |   |          |          |         |          |          |          |           |            |
|                              | H = Cerniera singola posteriore fissa con sno-<br>do sferico radiale (ISO MP5)      |   |          |          |         |          |          |          |           |            |
|                              | M = Perni di articolazione intermedia fissi o<br>spostabili (ISO MT4)               |   |          |          |         |          |          |          |           |            |
|                              |                                                                                     |   |          |          |         |          |          |          |           |            |
| Distanziale                  | Specificare lunghezza (v. richiamo relativo ai limitatori di corsa; indicare in mm) |   |          |          |         |          |          |          |           |            |
| Fa = frenatura anteriore     |                                                                                     |   |          |          |         |          |          |          |           |            |
| Fp = frenatura<br>posteriore |                                                                                     |   |          |          |         |          |          |          |           |            |
| S = esecuzioni<br>speciali   | Indicare la variante allo standard                                                  |   |          |          |         |          |          |          |           |            |



# ESECUZIONI SPECIALI (indicare nella sigla il tipo di esecuzioni speciali richieste)

# S = esecuzioni speciali





Tel: 00390331274812

Fax: 00390331272459

Email: info@comersystem.com

Sito web: www.comersystem.com

